Город бешаных рефератиков
.

.

РАЗДЕЛЫ

РЕКОМЕНДУЕМ

КАТАЛОГ РЕФЕРАТОВ

Реферат Алгоритм Кнута-Морриса-Пратта (WinWord)

Алгоритм Кнута - Морриса - Пратта

Алгоритм Кнута-Морриса-Пратта (КМП) получает на вход слово
X=x[1]x[2]... x[n]
и просматривает его слева направо буква за буквой, заполняя при этом массив натуральных чисел l[1]... l[n], где
l[i]=длина слова l(x[1]...х[i])
(функция l определена в предыдущем пункте). Словами: l[i] есть длина наибольшего начала слова x[1]...x[i], одновременно являющегося его концом.
Какое отношение все это имеет к поиску подслова?
Другими словами, как использовать алгоритм КМП для определения того, является ли слово A подсловом слова B?
Решение. Применим алгоритм КМП к слову A#B, где # - специальная буква, не встречающаяся ни в A, ни в B. Слово A является подсловом слова B тогда и только тогда, когда среди чисел в массиве l будет число, равное длине слова A.
Описать алгоритм заполнения таблицы l[1]...l[n].
Решение. Предположим, что первые i значений l[1]...l[i] уже найдены. Мы читаем очередную букву слова (т.е. x[i+1]) и должны вычислить l[i+1].

Другими словами, нас интересуют начала Z слова
x[1]...x[i+1,
одновременно являющиеся его концами -из них нам надо брать самое длинное. Откуда берутся эти начала? Каждое из них (не считая пустого) получается из некоторого слова Z' приписыванием буквы x[i+1] . Слово Z' является началом и
концом слова x[1]...x[i]. Однако не любое слово, являющееся началом и концом слова x[1]...x[i], годится - надо, чтобы за ним следовала буква x[i+1].
Получаем такой рецепт отыскания слова Z. Рассмотрим все начала слова x[1]...x[i], являющиеся одновременно его концами. Из них выберем подходящие - те, за которыми идет буква x[i+1]. Из подходящих выберем самое длинное. Приписав в его конец х[i+1], получим искомое слово Z. Теперь пора воспользоваться сделанными нами приготовлениями и вспомнить, что все слова, являющиеся одновременно началами и концами данного слова, можно получить повторными применениями к нему функции l из предыдущего раздела.
Вот что получается:
i:=1; 1[1]:=0;
{таблица l[1]..l[i] заполнена правильно}
while i <> n do begin
len:= l[i]
{len - длина начала слова x[1]..x[i], которое является
его концом; все более длинные начала оказались
неподходящими}
while (x[len+1]<>х[i+1]) and (len>0) do begin
{начало не подходит, применяем к нему функцию l}
len:=l[len];
end;
{нашли подходящее или убедились в отсутствии}
if x[len+1]=x[i+1] do begin
{х[1]..x[len] - самое длинное подходящее начало}
l[i+1]:=len+1;
end else begin
{подходящих нет}
l[i+1]:= 0;
end;
i:=i+1;
end;
Доказать, что число действий в приведенном только что алгоритме не превосходит Cn для некоторой константы C.
Решение. Это не вполне очевидно: обработка каждой очередной буквы может потребовать многих итераций во внутреннем цикле. Однако каждая такая итерация уменьшает len по крайней мере на 1, и в этом случае l[i+1] окажется заметно меньше l[i].




ГОРОДСКИЕ ЗАКОНЫ

Рефераты и/или содержимое рефератов предназначено исключительно для ознакомления, без целей коммерческого использования. Все права в отношении рефератов и/или содержимого рефератов принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие или полученные в связи с использованием рефератов и/или содержимого рефератов.

РЕКЛАМА









© ReferatCity.ru, рефераты, курсовые, дипломы, 2007-2018
При копирование материалов ссылка на сайт приветствуется.